ๆœ‰้™ๆ•ฐๅญฆ ไพ‹

クラメールの公式で数列を解く 9y-5x=3 , x+y=1 , z+2y=2
, ,
ใ‚นใƒ†ใƒƒใƒ— 1
Move all of the variables to the left side of each equation.
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 1.1
ใจใ‚’ไธฆในๆ›ฟใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 1.2
ใจใ‚’ไธฆในๆ›ฟใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 2
้€ฃ็ซ‹ๆ–น็จ‹ๅผใ‚’่กŒๅˆ—ๅฝขๅผใง่กจใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3
Find the determinant of the coefficient matrix .
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.1
Write in determinant notation.
ใ‚นใƒ†ใƒƒใƒ— 3.2
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in column by its cofactor and add.
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.2.1
Consider the corresponding sign chart.
ใ‚นใƒ†ใƒƒใƒ— 3.2.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
ใ‚นใƒ†ใƒƒใƒ— 3.2.3
The minor for is the determinant with row and column deleted.
ใ‚นใƒ†ใƒƒใƒ— 3.2.4
Multiply element by its cofactor.
ใ‚นใƒ†ใƒƒใƒ— 3.2.5
The minor for is the determinant with row and column deleted.
ใ‚นใƒ†ใƒƒใƒ— 3.2.6
Multiply element by its cofactor.
ใ‚นใƒ†ใƒƒใƒ— 3.2.7
The minor for is the determinant with row and column deleted.
ใ‚นใƒ†ใƒƒใƒ— 3.2.8
Multiply element by its cofactor.
ใ‚นใƒ†ใƒƒใƒ— 3.2.9
Add the terms together.
ใ‚นใƒ†ใƒƒใƒ— 3.3
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.4
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.5
ใฎๅ€คใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.5.1
่กŒๅˆ—ใฎ่กŒๅˆ—ๅผใฏๅ…ฌๅผใ‚’ๅˆฉ็”จใ—ใฆๆฑ‚ใ‚ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.5.2
่กŒๅˆ—ๅผใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.5.2.1
ๅ„้ …ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.5.2.1.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.5.2.1.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.5.2.2
ใ‹ใ‚‰ใ‚’ๅผ•ใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.6
่กŒๅˆ—ๅผใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 3.6.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.6.2
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 3.6.3
ใ‹ใ‚‰ใ‚’ๅผ•ใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 4
Since the determinant is not , the system can be solved using Cramer's Rule.
ใ‚นใƒ†ใƒƒใƒ— 5
Find the value of by Cramer's Rule, which states that .
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 5.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
ใ‚นใƒ†ใƒƒใƒ— 5.2
Find the determinant.
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 5.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in column by its cofactor and add.
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 5.2.1.1
Consider the corresponding sign chart.
ใ‚นใƒ†ใƒƒใƒ— 5.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
ใ‚นใƒ†ใƒƒใƒ— 5.2.1.3
The minor for is the determinant with row and column deleted.
ใ‚นใƒ†ใƒƒใƒ— 5.2.1.4
Multiply element by its cofactor.
ใ‚นใƒ†ใƒƒใƒ— 5.2.1.5
The minor for is the determinant with row and column deleted.
ใ‚นใƒ†ใƒƒใƒ— 5.2.1.6
Multiply element by its cofactor.
ใ‚นใƒ†ใƒƒใƒ— 5.2.1.7
The minor for is the determinant with row and column deleted.
ใ‚นใƒ†ใƒƒใƒ— 5.2.1.8
Multiply element by its cofactor.
ใ‚นใƒ†ใƒƒใƒ— 5.2.1.9
Add the terms together.
ใ‚นใƒ†ใƒƒใƒ— 5.2.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 5.2.3
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 5.2.4
ใฎๅ€คใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 5.2.4.1
่กŒๅˆ—ใฎ่กŒๅˆ—ๅผใฏๅ…ฌๅผใ‚’ๅˆฉ็”จใ—ใฆๆฑ‚ใ‚ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 5.2.4.2
่กŒๅˆ—ๅผใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 5.2.4.2.1
ๅ„้ …ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 5.2.4.2.1.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 5.2.4.2.1.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 5.2.4.2.2
ใ‹ใ‚‰ใ‚’ๅผ•ใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 5.2.5
่กŒๅˆ—ๅผใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 5.2.5.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 5.2.5.2
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 5.2.5.3
ใ‹ใ‚‰ใ‚’ๅผ•ใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 5.3
Use the formula to solve for .
ใ‚นใƒ†ใƒƒใƒ— 5.4
Substitute for and for in the formula.
ใ‚นใƒ†ใƒƒใƒ— 5.5
ใจใฎๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 5.5.1
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 5.5.2
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 5.5.2.1
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 5.5.2.2
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 5.5.2.3
ๅผใ‚’ๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6
Find the value of by Cramer's Rule, which states that .
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 6.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
ใ‚นใƒ†ใƒƒใƒ— 6.2
Find the determinant.
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 6.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in column by its cofactor and add.
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 6.2.1.1
Consider the corresponding sign chart.
ใ‚นใƒ†ใƒƒใƒ— 6.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
ใ‚นใƒ†ใƒƒใƒ— 6.2.1.3
The minor for is the determinant with row and column deleted.
ใ‚นใƒ†ใƒƒใƒ— 6.2.1.4
Multiply element by its cofactor.
ใ‚นใƒ†ใƒƒใƒ— 6.2.1.5
The minor for is the determinant with row and column deleted.
ใ‚นใƒ†ใƒƒใƒ— 6.2.1.6
Multiply element by its cofactor.
ใ‚นใƒ†ใƒƒใƒ— 6.2.1.7
The minor for is the determinant with row and column deleted.
ใ‚นใƒ†ใƒƒใƒ— 6.2.1.8
Multiply element by its cofactor.
ใ‚นใƒ†ใƒƒใƒ— 6.2.1.9
Add the terms together.
ใ‚นใƒ†ใƒƒใƒ— 6.2.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6.2.3
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6.2.4
ใฎๅ€คใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 6.2.4.1
่กŒๅˆ—ใฎ่กŒๅˆ—ๅผใฏๅ…ฌๅผใ‚’ๅˆฉ็”จใ—ใฆๆฑ‚ใ‚ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6.2.4.2
่กŒๅˆ—ๅผใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 6.2.4.2.1
ๅ„้ …ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 6.2.4.2.1.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6.2.4.2.1.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6.2.4.2.2
ใ‹ใ‚‰ใ‚’ๅผ•ใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6.2.5
่กŒๅˆ—ๅผใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 6.2.5.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6.2.5.2
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6.2.5.3
ใ‹ใ‚‰ใ‚’ๅผ•ใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6.3
Use the formula to solve for .
ใ‚นใƒ†ใƒƒใƒ— 6.4
Substitute for and for in the formula.
ใ‚นใƒ†ใƒƒใƒ— 6.5
ใจใฎๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 6.5.1
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6.5.2
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 6.5.2.1
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6.5.2.2
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 6.5.2.3
ๅผใ‚’ๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 7
Find the value of by Cramer's Rule, which states that .
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 7.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
ใ‚นใƒ†ใƒƒใƒ— 7.2
Find the determinant.
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 7.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in column by its cofactor and add.
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 7.2.1.1
Consider the corresponding sign chart.
ใ‚นใƒ†ใƒƒใƒ— 7.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
ใ‚นใƒ†ใƒƒใƒ— 7.2.1.3
The minor for is the determinant with row and column deleted.
ใ‚นใƒ†ใƒƒใƒ— 7.2.1.4
Multiply element by its cofactor.
ใ‚นใƒ†ใƒƒใƒ— 7.2.1.5
The minor for is the determinant with row and column deleted.
ใ‚นใƒ†ใƒƒใƒ— 7.2.1.6
Multiply element by its cofactor.
ใ‚นใƒ†ใƒƒใƒ— 7.2.1.7
The minor for is the determinant with row and column deleted.
ใ‚นใƒ†ใƒƒใƒ— 7.2.1.8
Multiply element by its cofactor.
ใ‚นใƒ†ใƒƒใƒ— 7.2.1.9
Add the terms together.
ใ‚นใƒ†ใƒƒใƒ— 7.2.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 7.2.3
ใฎๅ€คใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 7.2.3.1
่กŒๅˆ—ใฎ่กŒๅˆ—ๅผใฏๅ…ฌๅผใ‚’ๅˆฉ็”จใ—ใฆๆฑ‚ใ‚ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 7.2.3.2
่กŒๅˆ—ๅผใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 7.2.3.2.1
ๅ„้ …ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 7.2.3.2.1.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 7.2.3.2.1.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 7.2.3.2.2
ใ‹ใ‚‰ใ‚’ๅผ•ใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 7.2.4
ใฎๅ€คใ‚’ๆฑ‚ใ‚ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 7.2.4.1
่กŒๅˆ—ใฎ่กŒๅˆ—ๅผใฏๅ…ฌๅผใ‚’ๅˆฉ็”จใ—ใฆๆฑ‚ใ‚ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 7.2.4.2
่กŒๅˆ—ๅผใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 7.2.4.2.1
ๅ„้ …ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 7.2.4.2.1.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 7.2.4.2.1.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 7.2.4.2.2
ใ‹ใ‚‰ใ‚’ๅผ•ใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 7.2.5
่กŒๅˆ—ๅผใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 7.2.5.1
ๅ„้ …ใ‚’็ฐก็ด„ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 7.2.5.1.1
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 7.2.5.1.2
ใซใ‚’ใ‹ใ‘ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 7.2.5.2
ใ‹ใ‚‰ใ‚’ๅผ•ใใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 7.2.5.3
ใจใ‚’ใŸใ—็ฎ—ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 7.3
Use the formula to solve for .
ใ‚นใƒ†ใƒƒใƒ— 7.4
Substitute for and for in the formula.
ใ‚นใƒ†ใƒƒใƒ— 7.5
ใจใฎๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 7.5.1
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 7.5.2
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚ฟใƒƒใƒ—ใ—ใฆๆ‰‹้ †ใ‚’ใ•ใ‚‰ใซ่กจ็คบใ—ใฆใใ ใ•ใ„โ€ฆ
ใ‚นใƒ†ใƒƒใƒ— 7.5.2.1
ใ‚’ใงๅ› ๆ•ฐๅˆ†่งฃใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 7.5.2.2
ๅ…ฑ้€šๅ› ๆ•ฐใ‚’็ด„ๅˆ†ใ—ใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 7.5.2.3
ๅผใ‚’ๆ›ธใๆ›ใˆใพใ™ใ€‚
ใ‚นใƒ†ใƒƒใƒ— 8
้€ฃ็ซ‹ๆ–น็จ‹ๅผใฎ่งฃใ‚’่จ˜่ผ‰ใ—ใพใ™ใ€‚